INTERNATIONAL INDIAN SCHOOL, RIYADH

CLASS: X
TOPIC: POLYNOMIALS

SUBJECT: MATHEMATICS

1. Show that $x^{2}-3$ is a factor of $2 x^{4}+3 x^{3}-2 x^{2}-9 x-12$
2. Divide $\left(6+19 x+x^{2}-6 x^{3}\right)$ by $\left(2+5 x-3 x^{2}\right)$ and verify the division algorithm
3. Find other zeroes of the polynomial $p(x)=2 x^{4}+7 x^{3}-19 x^{2}-14 x+30$ if two of its zeroes are $\mathbf{V} 2$ and $-\sqrt{ } 2$
4. Find all the zeroes of $2 x^{4}-9 x^{3}+5 x^{2}+3 x-1$, if two of its zeroes are $2+\sqrt{ } 3$ and $2-\sqrt{ } 3$
(1, -1/2)
5. Find all the zeroes of polynomial $4 x^{4}-20 x^{3}+23 x^{2}+5 x-6$ if two of its zeroes are 2 and 3
(1/2, -1/2)
6. When a polynomial $f(x)$ is divided by $x^{2}-5$ the quotient is $x^{2}-2 x-3$ and remainder is zero. Find the polynomial and all its zeroes
($3,-1, v 5,-v 5$)
7. If the polynomial $f(x)=x^{4}-6 x^{3}+16 x^{2}-25 x+10$, is divided by another polynomial $x^{2}-2 x+k$ the remainder Comes out to be $x+a$, Find \mathbf{k} and \mathbf{a}
8. On dividing $x^{4}-2 x^{3}-5 x-8$ by a polynomial $g(x)$, the quotient and remainder were $x^{2}+5$ and $5 x+17$, respectively. Find $g(x)$

$$
\left(x^{2}-2 x-5\right)
$$

9. If the polynomial $6 x^{4}+8 x^{3}-5 x^{2}+a x+b$ is exactly divisible by the polynomial $2 x^{2}-5$, then find the values of a and b
(-20, -25)
10. If $x^{4}-2 x^{3}+6 x^{2}-6 x+k$ is completely divisible by $x^{2}-2 x+3$, then find the value of k
11. If the remainder on division of $x^{3}+2 x^{2}+k x+3$ by $x-3$ is 21 , find the quotient and the value of k
12. What must be subtracted from $2 x^{4}-11 x^{3}+29 x^{2}-40 x+29$, so that the resulting polynomial is exactly divisible By $x^{2}-3 x+4$
$(-2 x+5)$
13. Find the polynomial, whose zeroes are $\mathbf{2}+\mathrm{V} 3$ and $\mathbf{2 - \sqrt { 2 }}$
14.Form a quadratic polynomial, one of whose zero is $\mathbf{2 + V 5}$ and the sum of zeroes is $\mathbf{4}$
14. Find a quadratic polynomial whose sum and product of the zeroes are 21/8 and 5/16
($x^{2}-4 x+$)
15. Write a quadratic polynomial, the sum and product of whose zeroes are 3 and -2
$\left(16 x^{2}-42 x+5\right)$
$\left(x^{2}-3 x-2\right)$
16. Find the zeroes of the polynomial and verify the relationship between the zeroes and the coefficient
a) $4 x^{2}-7$
b) $\sqrt{ } 3 x^{2}-8 x+4 \sqrt{ } 3$
c) $2 x^{2}-3 \sqrt{ } 2 x-18$
17. If zeroes α and β of a polynomial $x^{2}-7 x+k$ are such that $\alpha-\beta=1$, then find the value of k
18. If one root of the polynomial $5 x^{2}+13 x+k$ is reciprocal of the other, then find the value of k ?
19. If one zero of the polynomial $\left(a^{2}+9\right) x^{2}+13 x+6 a$ is reciprocal of the other. Find the value of a
20. If α and β are the zeroes of the polynomial $f(x)=6 x^{2}+x-2$, find the value of $\begin{aligned} & 1 \\ & \alpha\end{aligned} \frac{1}{\beta}-\alpha \beta$
21. If α and β are the zeroes of the polynomial $f(x)=x^{2}-8 x+k$ such that $\alpha^{2}+\beta^{2}=40$, find k
22. If α, β are the zeroes of a polynomial, such that $\alpha+\beta=6$ and $\alpha \beta=4$, then writes the polynomial
23. If the product of zeroes of the polynomial $a x^{2}-6 x-6$ is 4 , find the value of a
25.If α, β are the zeroes of quadratic polynomial $2 x^{2}+5 x+k$, find the value of k such that $(\alpha+\beta)^{2}-\alpha \beta=24$
24. If α and β are zeroes of $x^{2}+5 x+5$, find the value of $\alpha^{-1}+\beta^{-1}$
25. α, β are the zeroes of the quadratic polynomial $x^{2}-(k+6) x+2(2 k-1)$. Find the value of k if $\alpha+\beta=1 / 2 \alpha \beta$
26. if α, β are the zeroes of the quadratic polynomial $x^{2}-7 x+10$, find the value of $\alpha^{3}+\beta^{3}$
27. m, n are zeroes of $a x^{2}-12 x+c$. Find the value of a and c if $m+n=m n=3$
28. Find the sum and the product of the zeroes of cubic polynomial $2 x^{3}-5 x^{2}-14 x+8$
(5/2, -7, -4)
29. Find the sum and product of the zeroes of quadratic polynomial $x^{2}-3$
30. If 1 is a zero of polynomial $a x^{2}-3(a-1)-1$, then find the value of a

