INTERNATIONAL INDIAN SCHOOL, RIYADH

CLASS: X SUBJECT: MATHEMATICS

TOPIC: POLYNOMIALS

1. Show that $x^2 - 3$ is a factor of $2x^4 + 3x^3 - 2x^2 - 9x - 12$	
2. Divide $(6 + 19x + x^2 - 6x^3)$ by $(2 + 5x - 3x^2)$ and verify the division algorithm	
3. Find other zeroes of the polynomial $p(x) = 2x^4 + 7x^3 - 19x^2 - 14x + 30$ if two of its zeroes are $\sqrt{2}$ and $\sqrt{2}$	(3/2, -5)
4. Find all the zeroes of $2x^4 - 9x^3 + 5x^2 + 3x - 1$, if two of its zeroes are $2 + \sqrt{3}$ and $2 - \sqrt{3}$	(1, -1/2)
5. Find all the zeroes of polynomial $4x^4 - 20x^3 + 23x^2 + 5x - 6$ if two of its zeroes are 2 and 3	(1/2, -1/2)
6. When a polynomial $f(x)$ is divided by $x^2 - 5$ the quotient is $x^2 - 2x - 3$ and remainder is zero. Find the polynomial	al and all its zeroes
	(3, -1, √5, -√5)
7. If the polynomial $f(x) = x^4 - 6x^3 + 16x^2 - 25x + 10$, is divided by another polynomial $x^2 - 2x + k$ the remainder Cor	nes out to be x + a,
Find k and a	(k = 5, a = -5)
8. On dividing $x^4 - 2x^3 - 5x - 8$ by a polynomial g(x), the quotient and remainder were $x^2 + 5$ and $5x + 17$, respectively.	vely. Find g(x)
	(x ² – 2x - 5)
9. If the polynomial $6x^4 + 8x^3 - 5x^2 + ax + b$ is exactly divisible by the polynomial $2x^2 - 5$, then find the values of a	and b
	(-20, -25)
10. If $x^4 - 2x^3 + 6x^2 - 6x + k$ is completely divisible by $x^2 - 2x + 3$, then find the value of k	(k = 9)
11. If the remainder on division of $x^3 + 2x^2 + kx + 3$ by x - 3 is 21, find the quotient and the value of k	
12. What must be subtracted from $2x^4 - 11x^3 + 29x^2 - 40x + 29$, so that the resulting polynomial is exactly divisib	le By x ² - 3x + 4
	(-2x + 5)
13. Find the polynomial, whose zeroes are $2 + \sqrt{3}$ and $2 - \sqrt{3}$	$(x^2 - 4x +)$
14.Form a quadratic polynomial, one of whose zero is 2 + v5 and the sum of zeroes is 4	$(x^2 - 4x - 1)$
15. Find a quadratic polynomial whose sum and product of the zeroes are 21/8 and 5/16	(16x ² - 42x +5)
16. Write a quadratic polynomial, the sum and product of whose zeroes are 3 and -2	$(x^2 - 3x - 2)$
17. Find the zeroes of the polynomial and verify the relationship between the zeroes and the coefficient	
a) $4x^2 - 7$ b) $\sqrt{3}x^2 - 8x + 4\sqrt{3}$ c) $2x^2 - 3\sqrt{2}x - 18$	
18. If zeroes α and β of a polynomial $x^2 - 7x + k$ are such that $\alpha - \beta = 1$, then find the value of k	(k = 12)
19. If one root of the polynomial $5x^2 + 13x + k$ is reciprocal of the other, then find the value of k?	(k = 5)
20. If one zero of the polynomial (a^2 + 9) x^2 + 13x + 6a is reciprocal of the other. Find the value of a	(3)
21. If α and β are the zeroes of the polynomial f(x) = 6x ² + x -2, find the value of 1 + 1 - $\alpha \beta$	(5/6)
α β	
22. If α and β are the zeroes of the polynomial f(x) = $x^2 - 8x + k$ such that $\alpha^2 + \beta^2 = 40$, find k	(12)
23. If α , β are the zeroes of a polynomial, such that $\alpha + \beta = 6$ and $\alpha \beta = 4$, then writes the polynomial	
24. If the product of zeroes of the polynomial $ax^2 - 6x - 6$ is 4, find the value of a	(-3/2)
25. If α , β are the zeroes of quadratic polynomial $2x^2 + 5x + k$, find the value of k such that $(\alpha + \beta)^2 - \alpha \beta = 24$	(- 71/2)
26. If α and β are zeroes of x^2 + 5x + 5, find the value of α^{-1} + β^{-1}	(-1)
27. α, β are the zeroes of the quadratic polynomial $x^2 - (k+6)x + 2(2k - 1)$. Find the value of k if α + β = ½ α β	(7)
28. if α , β are the zeroes of the quadratic polynomial $x^2 - 7x + 10$, find the value of $\alpha^3 + \beta^3$	(133)
29. m, n are zeroes of $ax^2 - 12x + c$. Find the value of a and c if m + n = m n = 3	(12)
30. Find the sum and the product of the zeroes of cubic polynomial $2x^3 - 5x^2 - 14x + 8$	(5/2, -7, -4)
31. Find the sum and product of the zeroes of quadratic polynomial $x^2 - 3$	
32. If 1 is a zero of polynomial $ax^2 - 3(a-1) - 1$, then find the value of a	(1)

PREPARED BY: MAHABOOB PASHA

